Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365228

RESUMO

The short-chain gaseous alkanes (ethane, propane, and butane; SCGAs) are important components of natural gas, yet their fate in environmental systems is poorly understood. Microbially mediated anaerobic oxidation of SCGAs coupled to nitrate reduction has been demonstrated for propane, but is yet to be shown for ethane or butane-despite being energetically feasible. Here we report two independent bacterial enrichments performing anaerobic ethane and butane oxidation, respectively, coupled to nitrate reduction to dinitrogen gas and ammonium. Isotopic 13C- and 15N-labelling experiments, mass and electron balance tests, and metabolite and meta-omics analyses collectively reveal that the recently described propane-oxidizing "Candidatus Alkanivorans nitratireducens" was also responsible for nitrate-dependent anaerobic oxidation of the SCGAs in both these enrichments. The complete genome of this species encodes alkylsuccinate synthase genes for the activation of ethane/butane via fumarate addition. Further substrate range tests confirm that "Ca. A. nitratireducens" is metabolically versatile, being able to degrade ethane, propane, and butane under anoxic conditions. Moreover, our study proves nitrate as an additional electron sink for ethane and butane in anaerobic environments, and for the first time demonstrates the use of the fumarate addition pathway in anaerobic ethane oxidation. These findings contribute to our understanding of microbial metabolism of SCGAs in anaerobic environments.


Assuntos
Etano , Nitratos , Etano/metabolismo , Nitratos/metabolismo , Propano/metabolismo , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Oxirredução , Butanos/metabolismo , Gases/metabolismo , Fumaratos/metabolismo
2.
Nat Commun ; 13(1): 6115, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253480

RESUMO

Anaerobic microorganisms are thought to play a critical role in regulating the flux of short-chain gaseous alkanes (SCGAs; including ethane, propane and butane) from terrestrial and aquatic ecosystems to the atmosphere. Sulfate has been confirmed to act as electron acceptor supporting microbial anaerobic oxidation of SCGAs, yet several other energetically more favourable acceptors co-exist with these gases in anaerobic environments. Here, we show that a bioreactor seeded with biomass from a wastewater treatment facility can perform anaerobic propane oxidation coupled to nitrate reduction to dinitrogen gas and ammonium. The bioreactor was operated for more than 1000 days, and we used 13C- and 15N-labelling experiments, metagenomic, metatranscriptomic, metaproteomic and metabolite analyses to characterize the microbial community and the metabolic processes. The data collectively suggest that a species representing a novel order within the bacterial class Symbiobacteriia is responsible for the observed nitrate-dependent propane oxidation. The closed genome of this organism, which we designate as 'Candidatus Alkanivorans nitratireducens', encodes pathways for oxidation of propane to CO2 via fumarate addition, and for nitrate reduction, with all the key genes expressed during nitrate-dependent propane oxidation. Our results suggest that nitrate is a relevant electron sink for SCGA oxidation in anaerobic environments, constituting a new microbially-mediated link between the carbon and nitrogen cycles.


Assuntos
Compostos de Amônio , Nitratos , Alcanos/metabolismo , Anaerobiose , Butanos , Carbono , Dióxido de Carbono , Ecossistema , Etano/metabolismo , Fumaratos , Metano/metabolismo , Nitratos/metabolismo , Oxirredução , Propano/metabolismo , Sulfatos/metabolismo
3.
ISME J ; 16(1): 68-77, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34226659

RESUMO

Tropical scleractinian corals support a diverse assemblage of microbial symbionts. This 'microbiome' possesses the requisite functional diversity to conduct a range of nitrogen (N) transformations including denitrification, nitrification, nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA). Very little direct evidence has been presented to date verifying that these processes are active within tropical corals. Here we use a combination of stable isotope techniques, nutrient uptake calculations and captured metagenomics to quantify rates of nitrogen cycling processes in a selection of tropical scleractinian corals. Denitrification activity was detected in all species, albeit with very low rates, signifying limited importance in holobiont N removal. Relatively greater nitrogen fixation activity confirms that corals are net N importers to reef systems. Low net nitrification activity suggests limited N regeneration capacity; however substantial gross nitrification activity may be concealed through nitrate consumption. Based on nrfA gene abundance and measured inorganic N fluxes, we calculated significant DNRA activity in the studied corals, which has important implications for coral reef N cycling and warrants more targeted investigation. Through the quantification and characterisation of all relevant N-cycling processes, this study provides clarity on the subject of tropical coral-associated biogeochemical N-cycling.


Assuntos
Compostos de Amônio , Antozoários , Animais , Desnitrificação , Nitratos , Nitrificação , Nitrogênio
4.
Nat Commun ; 11(1): 1500, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198372

RESUMO

Anthropogenic nutrient discharge to coastal marine environments is commonly associated with excessive algal growth and ecosystem degradation. However in the world's largest coral reef ecosystem, the Great Barrier Reef (GBR), the response to enhanced terrestrial nutrient inputs since European settlement in the 1850's remains unclear. Here we use a 333 year old composite record (1680-2012) of 15N/14N in coral skeleton-bound organic matter to understand how nitrogen cycling in the coastal GBR has responded to increased anthropogenic nutrient inputs. Our major robust finding is that the coral record shows a long-term decline in skeletal 15N/14N towards the present. We argue that this decline is evidence for increased coastal nitrogen fixation rather than a direct reflection of anthropogenic nitrogen inputs. Reducing phosphorus discharge and availability would short-circuit the nitrogen fixation feedback loop and help avoid future acute and chronic eutrophication in the coastal GBR.


Assuntos
Antozoários/fisiologia , Ciclo do Nitrogênio , Nitrogênio/metabolismo , Animais , Recifes de Corais , Ecossistema , Monitoramento Ambiental , Eutrofização , Isótopos , Biologia Marinha , Fósforo/metabolismo
5.
Sci Total Environ ; 656: 108-117, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30504013

RESUMO

Many coffee (Coffea arabica L) production systems are characterised by high use of nitrogen (N) fertilisers, which can result in N leaching and emissions of nitrous oxide (N2O). We investigated the potential for legume cover crops grown inter-row to provide N for coffee trees and lower seasonal N2O emissions compared to poultry litter amendment at two subtropical field sites over 12 months, with unfertilised traditional grass groundcover used as a control treatment. Groundcovers (legume and grass treatments) were slashed from the inter-row into the tree line every 2-6 weeks as per normal farming operations. The prostrate ground cover legume Pinto peanut (Arachis pintoi) produced 4-5 t ha-1 biomass at both sites over the 12 month period, and fixed 146 kg N ha-1 year-1 at one site as estimated using the 15N natural abundance method. Background emissions from soil were lower at site 1 (0.38 kg N2O-N ha-1 year-1) than site 2 (2.26 kg N2O-N ha-1 year-1) reflecting differences in soil N and C levels at the sites. The use of Pinto peanut residues as an N amendment didn't result in any N2O flux events beyond those observed in the traditional groundcover control treatment across the season at either site, while the application of poultry litter to match farmer practice at these sites led to a major emission event. Ultimately, the Pinto peanut cover crop treatment led to a lower emission factor than for poultry litter at both sites, and resulted in significantly lower cumulative seasonal emissions for the legume cover crop (0.34 kg N2O-N ha-1 season-1) than poultry litter amendment (0.68 kg N2O-N ha-1 season-1) at site 1 despite similar inputs of N into the system. These findings suggest cover crop legumes could be integrated into coffee plantations to offset a portion of external N inputs, while lowering N2O emissions.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Arachis/metabolismo , Recuperação e Remediação Ambiental/métodos , Nitrogênio/metabolismo , Óxido Nitroso/análise , Coffea/crescimento & desenvolvimento , Produção Agrícola/métodos , Produtos Agrícolas/metabolismo , New South Wales
6.
Sci Total Environ ; 644: 360-370, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-29981984

RESUMO

Inline sludge treatment using free nitrous acid (FNA) was recently shown to be effective in establishing the nitrite pathway in a biological nitrogen removal system. However, the effects of FNA treatment conditions on the nitrite pathway performance remained to be investigated. In this study, three different FNA treatment frequencies (daily sludge treatment ratios of 0.22, 0.31 and 0.38, respectively), two FNA concentrations (1.35 mgN/L and 4.23 mgN/L, respectively) and two influent feeding regimes (one- and two-step feeding) were investigated in four laboratory-scale sequencing batch reactors. The nitrite accumulation ratio was positively correlated to the FNA treatment frequency. However, when a high treatment frequency was used e.g., daily sludge treatment ratio of 0.38, a significant reduction in ammonia oxidizing bacteria (AOB) activity occurred, leading to poor ammonium oxidation. AOB were able to acclimatise to FNA concentrations up to of 4.23 mgN/L, whereas nitrite oxidizing bacteria (NOB) were limited by an FNA concentration of 1.35 mgN/L over the duration of the study (up to 120 days). This difference in sensitivity to FNA could be used to further enhance nitrite accumulation, with 90% accumulation achieved at an FNA concentration of 4.23 mgN/L and a daily sludge treatment ratio of 0.31 in this study. However, this high level of nitrite accumulation led to increased N2O emission, with emission factors of up to 3.9% observed. The N2O emission was mitigated (reduced to 1.3%) by applying two-step feeding resulting in a nitrite accumulation ratio of 45.1%. Economic analysis showed that choosing the optimal FNA treatment conditions depends on a combination of the wastewater characteristics, the nitrogen discharge standards, and the operational costs. This study provides important information for the optimisation and practical application of FNA-based sludge treatment technology for achieving the mainstream stable nitrite pathway.

7.
Sci Adv ; 4(6): eaao4985, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29928690

RESUMO

Organic matter burial in mangrove forests results in the removal and long-term storage of atmospheric CO2, so-called "blue carbon." However, some of this organic matter is metabolized and returned to the atmosphere as CH4. Because CH4 has a higher global warming potential than the CO2 fixed in the organic matter, it can offset the CO2 removed via carbon burial. We provide the first estimate of the global magnitude of this offset. Our results show that high CH4 evasion rates have the potential to partially offset blue carbon burial rates in mangrove sediments on average by 20% (sensitivity analysis offset range, 18 to 22%) using the 20-year global warming potential. Hence, mangrove sediment and water CH4 emissions should be accounted for in future blue carbon assessments.

8.
Glob Chang Biol ; 21(9): 3219-45, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25752934

RESUMO

Nitrous oxide is a powerful, long-lived greenhouse gas, but we know little about the role of estuarine areas in the global N2 O budget. This review summarizes 56 studies of N2 O fluxes and associated biogeochemical controlling factors in estuarine open waters, salt marshes, mangroves, and intertidal sediments. The majority of in situ N2 O production occurs as a result of sediment denitrification, although the water column contributes N2 O through nitrification in suspended particles. The most important factors controlling N2 O fluxes seem to be dissolved inorganic nitrogen (DIN) and oxygen availability, which in turn are affected by tidal cycles, groundwater inputs, and macrophyte density. The heterogeneity of coastal environments leads to a high variability in observations, but on average estuarine open water, intertidal and vegetated environments are sites of a small positive N2 O flux to the atmosphere (range 0.15-0.91; median 0.31; Tg N2 O-N yr(-1) ). Global changes in macrophyte distribution and anthropogenic nitrogen loading are expected to increase N2 O emissions from estuaries. We estimate that a doubling of current median NO3 (-) concentrations would increase the global estuary water-air N2 O flux by about 0.45 Tg N2 O-N yr(-1) or about 190%. A loss of 50% of mangrove habitat, being converted to unvegetated intertidal area, would result in a net decrease in N2 O emissions of 0.002 Tg N2 O-N yr(-1) . In contrast, conversion of 50% of salt marsh to unvegetated area would result in a net increase of 0.001 Tg N2 O-N yr(-1) . Decreased oxygen concentrations may inhibit production of N2 O by nitrification; however, sediment denitrification and the associated ratio of N2 O:N2 is expected to increase.


Assuntos
Alismatales/metabolismo , Estuários , Óxido Nitroso/metabolismo , Áreas Alagadas , Desnitrificação , Nitrificação
9.
Environ Sci Pollut Res Int ; 22(15): 11340-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25804658

RESUMO

The remediation of four estrogenic endocrine-disrupting compounds (EDCs), estrone (E1), estradiol (E2), ethinylestradiol (EE2) and estriol (E3), was measured in saturated and unsaturated carbonate sand-filled columns dosed with wastewater from a sewage treatment plant. The estrogen equivalency (EEQ) of inlet wastewater was 1.2 ng L(-1) and was remediated to an EEQ of 0.5 ng L(-1) through the unsaturated carbonate sand-filled columns. The high surface area of carbonate sand and associated high microbial activity may have assisted the degradation of these estrogens. The fully saturated sand columns showed an increase in total estrogenic potency with an EEQ of 2.4 ng L(-1), which was double that of the inlet wastewater. There was a significant difference (P < 0.05) in total estrogenic potency between aerobic and anaerobic columns. The breakdown of conjugated estrogens to estrogenic EDCs formed under long residence time and reducing conditions may have been responsible for the increase in the fully saturated columns. This may also be explained by the desorption of previously sorbed estrogenic EDCs. The effect of additional filter materials, such as basalt sediment and coconut fibre, on estrogenic EDC reduction was also tested. None of these amendments provided improvements in estrogen remediation relative to the unamended unsaturated carbonate sand columns. Aerobic carbonate sand filters have good potential to be used as on-site wastewater treatment systems for the reduction of estrogenic EDCs. However, the use of fully saturated sand filters, which are used to promote denitrification, and the loss of nitrogen as N2 were shown to cause an increase in EEQ. The potential for the accumulation of estrogenic EDCs under anaerobic conditions needs to be considered when designing on-site sand filtration systems required to reduce nitrogen. Furthermore, the accumulation of estrogens under anaerobic conditions such as under soil absorption systems or leachate fields has the potential to contaminate groundwater especially when the water table levels fluctuate.


Assuntos
Disruptores Endócrinos/química , Estrona/química , Águas Residuárias/análise , Poluentes Químicos da Água/química , Carbonatos/química , Disruptores Endócrinos/análise , Estradiol/análise , Estradiol/química , Estriol/análise , Estriol/química , Estrogênios/análise , Estrogênios/química , Estrona/análise , Etinilestradiol/análise , Etinilestradiol/química , Permeabilidade , Dióxido de Silício/química , Águas Residuárias/economia , Poluentes Químicos da Água/análise , Purificação da Água
10.
Environ Sci Technol ; 47(22): 12938-45, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24131451

RESUMO

Development of cavity ring-down spectroscopy (CRDS) has enabled real-time monitoring of carbon stable isotope ratios of carbon dioxide and methane in air. Here we demonstrate that CRDS can be adapted to assess aquatic carbon cycling processes from microbial to ecosystem scales. We first measured in situ isotopologue concentrations of dissolved CO2 ((12)CO2 and (13)CO2) and CH4 ((12)CH4 and (13)CH4) with CRDS via a closed loop gas equilibration device during a survey along an estuary and during a 40 h time series in a mangrove creek (ecosystem scale). A similar system was also connected to an in situ benthic chamber in a seagrass bed (community scale). Finally, a pulse-chase isotope enrichment experiment was conducted by measuring real-time release of (13)CO2 after addition of (13)C enriched phytoplankton to exposed intertidal sediments (microbial scale). Miller-Tans plots revealed complex transformation pathways and distinct isotopic source values of CO2 and CH4. Calculations of δ(13)C-DIC based on CRDS measured δ(13)C-CO2 and published fractionation factors were in excellent agreement with measured δ(13)C-DIC using isotope ratio mass spectroscopy (IRMS). The portable CRDS instrumentation used here can obtain real-time, high precision, continuous greenhouse gas data in lakes, rivers, estuaries and marine waters with less effort than conventional laboratory-based techniques.


Assuntos
Organismos Aquáticos/metabolismo , Bactérias/metabolismo , Ciclo do Carbono , Ecossistema , Análise Espectral/métodos , Austrália , Dióxido de Carbono/análise , Isótopos de Carbono , Estuários , Modelos Lineares , Espectrometria de Massas , Metano/análise , Fitoplâncton/metabolismo , Fatores de Tempo
11.
PLoS One ; 7(9): e42810, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22962581

RESUMO

Settlement ponds are used to treat aquaculture discharge water by removing nutrients through physical (settling) and biological (microbial transformation) processes. Nutrient removal through settling has been quantified, however, the occurrence of, and potential for microbial nitrogen (N) removal is largely unknown in these systems. Therefore, isotope tracer techniques were used to measure potential rates of denitrification and anaerobic ammonium oxidation (anammox) in the sediment of settlement ponds in tropical aquaculture systems. Dinitrogen gas (N(2)) was produced in all ponds, although potential rates were low (0-7.07 nmol N cm(-3) h(-1)) relative to other aquatic systems. Denitrification was the main driver of N(2) production, with anammox only detected in two of the four ponds. No correlations were detected between the measured sediment variables (total organic carbon, total nitrogen, iron, manganese, sulphur and phosphorous) and denitrification or anammox. Furthermore, denitrification was not carbon limited as the addition of particulate organic matter (paired t-Test; P = 0.350, n = 3) or methanol (paired t-Test; P = 0.744, n = 3) did not stimulate production of N(2). A simple mass balance model showed that only 2.5% of added fixed N was removed in the studied settlement ponds through the denitrification and anammox processes. It is recommended that settlement ponds be used in conjunction with additional technologies (i.e. constructed wetlands or biological reactors) to enhance N(2) production and N removal from aquaculture wastewater.


Assuntos
Nitrogênio/química , Compostos de Amônio Quaternário/química , Águas Residuárias/química , Aquicultura , Carbono/química , Desnitrificação , Sedimentos Geológicos , Humanos , Isótopos de Nitrogênio , Oxirredução , Lagoas , Áreas Alagadas
12.
Sci Total Environ ; 409(24): 5359-67, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21959246

RESUMO

Free surface water constructed wetlands (CWs) provide a buffer between domestic wastewater treatment plants and natural waterways. Understanding the biogeochemical processes in CWs is crucial to improve their performance. In this study we measured a range of water and sediment parameters, and biogeochemical processes, in an effort to describe the processing of nutrients within two wetland cells in series. As a whole the studied CW effectively absorbed both nitrogen (N) and phosphorus (P) emanating from the waste treatment plant. However the two individual cells showed marked differences related to the availability of oxygen within the water column and the sediments. In one cell we speculated that the prevalence of surface plant species reduced its ability to function as a net nutrient sink. Here we observed a build-up of sediment organic matter, sediment anoxia, a decoupling of nitrification-denitrification, and a flux of N and P out of the sediments to the overlying water. The availability of DO in the surface sediments of the second studied cell led to improved coupling between nitrification-denitrification and a net uptake of both NH4+ and PO4(3-). We hypothesise that the dominance of deeply rooted macrophytes in the second cell was responsible for the improved sediment quality.


Assuntos
Sedimentos Geológicos/química , Nitrogênio/análise , Fósforo/análise , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Áreas Alagadas , Anaerobiose , Biodegradação Ambiental , Água Doce/química , New South Wales , Nitrogênio/metabolismo , Compostos de Nitrogênio/análise , Compostos de Nitrogênio/metabolismo , Ciclo do Nitrogênio , Oxigênio/análise , Oxigênio/metabolismo , Fósforo/metabolismo , Compostos de Fósforo/análise , Compostos de Fósforo/metabolismo , Desenvolvimento Vegetal , Plantas/metabolismo , Poluentes Químicos da Água/metabolismo , Purificação da Água
13.
J Environ Qual ; 39(6): 2191-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21284318

RESUMO

This study describes the spatial variability in nitrogen (N) transformation within a constructed wetland (CW) treating domestic effluent. Nitrogen cycling within the CW was driven by settlement and mineralization of particulate organic nitrogen and uptake of NO3-. The concentration of NO3- was found to decrease, as the delta15N-NO3- signature increased, as water flowed through the CW, allowing denitrification rates to be estimated on the basis of the degree of fractionation of delta15N-NO3-. Estimates of denitrification hinged on the determination of a net isotope effect (eta), which was influenced byprocesses that enrich or deplete 15NO3- (e.g., nitrification), as well as the rate constants associated with the different processes involved in denitrification (i.e., diffusion and enzyme activity). The influence of nitrification on eta was quantified; however, it remained unclear how eta varied due to variability in denitrification rate constants. A series of stable isotope amendment experiments was used to further constrain the value of eta and calculate rates of denitrification, and nitrification, within the wetland. The maximum calculated rate of denitrification was 956 +/- 187 micromol N m(-2) h(-1), and the maximum rate of nitrification was 182 +/- 28.9 micromol N m(-2) h(-1). Uptake of NO3- was quantitatively more important than denitrification throughoutthe wetland. Rates of N cycling varied spatially within thewetland, with denitrification dominating in the downstream deoxygenated region of the wetland. Studies that use fractionation of N to derive rate estimates must exercise caution when interpreting the net isotope effect. We suggest a sampling procedure for future natural abundance studies that may help improve the accuracy of N cycling rate estimates.


Assuntos
Nitrogênio/química , Nitrogênio/metabolismo , Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , Biodegradação Ambiental , Monitoramento Ambiental , Isótopos de Nitrogênio , Fatores de Tempo
14.
Environ Sci Technol ; 42(24): 9144-50, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19174884

RESUMO

This study used anaerobic slurry assays and intact core incubations to quantify potential rates of anammox (anaerobic ammonia oxidation) in sediments along the flow path of a surface flow constructed wetland receiving secondary treated sewage effluent. Anammox occurred at two of the four sites assayed with a maximum rate of 199.4 +/- 18.7 micromol N x m(-2) x hr(-1) (24% of total N2 production) at the discharge end of the wetland. Denitrification was the major producer of N2, with a maximum rate of 965.3 +/- 122.8 micromol N x m(-2) x hr(-1) at site 2. Oxygen was probably the key regulator of anammox activity within the studied CW. In addition to anammox, we found evidence that nitrifier-denitrification was potentially responsible for the production of N2O. Total production of N2O was 15.1% of the total gaseous N produced. Limitations to the methodology for quantifying anammox in CW's are outlined. This study demonstrated that denitrification is not the only pathway for gaseous production in constructed wetlands and that wetlands may be significant sources of greenhouse gases such as N2O.


Assuntos
Amônia/metabolismo , Sedimentos Geológicos/química , Nitrogênio/metabolismo , Áreas Alagadas , Anaerobiose , Modelos Químicos , Oxirredução , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...